\qquad
\qquad Hour: \qquad

The Physics of Instruments Lab

Harmonics- frequencies that create a standing wave
String instrument or open at both ends -A standing wave is created at every $\underline{1 / 2}$ of a wavelength.

$$
\text { equation: } \quad f_{n}=\frac{n(v)}{2 L}, n=1,2,3, \ldots
$$

Closed at one end - A standing wave is created at every odd $\mathbf{1} / \mathbf{4}$ of a wavelength.

$$
\text { equation: } \quad f_{n}=\frac{n(v)}{4 L}, n=\mathbf{1 , 3 , 5}, \ldots
$$

Activity \#1: PVC Pipe and Graduated Cylinder You need 3 different tuning forks and a PVC instrument.

Background Information

What type of instrument is this? open at both ends or closed at one end (circle one)
What fraction of the wave makes the first standing wave for this type of instrument? \qquad
Data:
found on the tuning fork
The distance is NOT the same as the wavelength.

Distance (m)

1. Calculate the theoretical speed of sound in the room right now using $v=330 \mathrm{~m} / \mathrm{s}+0.6^{\circ} \mathrm{C}$ in m / s and in mph. $75^{\circ} \mathrm{F}$ in room
\qquad mph
2. Review from chemistry:
a. Hotter molecules move
b. Hotter molecules will
faster / slower
spread out / get closer together
3. If the water in the tube was hot, and that heated up the air in the tube, should it increase or decrease your wavelength measurement? Explain why using your answers to \#7!
4. If your wavelength increases:
a. What should happen to the frequency? Increase / decrease
b. What should happen to the pitch? Increase / decrease
c. Test this with the lab setup that is hot. Does it work? \qquad
\qquad
\qquad Hour: \qquad

Activity \#2: Boomwhackers! You need 3 different Boomwhackers and one of the caps. According to the Boomwhacker info sheet, the actual frequencies are: (Use for \% error)

$$
\begin{array}{ll}
256 \mathrm{~Hz}=\mathrm{C} \text { (long red) } & 384 \mathrm{~Hz}=\mathrm{G} \text { (dark green) } \\
288 \mathrm{~Hz}=\mathrm{D} \text { (orange) } & 426.7 \mathrm{~Hz}=\mathrm{A} \text { (purple) } \\
320 \mathrm{~Hz}=\mathrm{E} \text { (yellow) } & 480 \mathrm{~Hz}=\mathrm{B} \text { (pink) } \\
341.3 \mathrm{~Hz}=\mathrm{F} \text { (light green) } & 512 \mathrm{~Hz}=\mathrm{C} \text { (short red) }
\end{array}
$$

Data and calculations:

	color	length (m)	note it plays	frequency of note	calculate the fundamental frequency $(\mathrm{n}=1)$	Calculate the \% error for freq. (on eq. sheet)
$\mathbf{1}$		0.495	E	320		
$\mathbf{2}$		0.369	A	426.7		
$\mathbf{3}$						

Activity \#3: Tuning forks: Strike a tuning fork and hold it just inside the end of a Boomwhacker with a matching frequency. What happens? Gets louder and vibrates

What is this called? \qquad
Activity \#4: Capping a Boomwhacker: Measure the length of 1 boomwhacker= $\quad \mathbf{0 . 4 9 5}$ m

- When a pipe is open on both ends, it contains $1 / 2 / 1 / 4$ of a wavelength? (when $n=1$)
- When a pipe is closed on one end, it contains $1 / 2 / 1 / 4$ of a wavelength? (when $n=1$)

According to your previous answers:

A full wavelength for a BW should be longer / shorter when it is closed on one end
The frequency of the BW should increase / decrease when closed on one end.
The pitch should be higher / lower when closed on one end.
Cap the boomwhacker and try it. Where you correct? __Pitch was lower_ \qquad
Activity \#5: Dollar Store Toy You need one dollar store toy.
Data: current temperature in the room: $75^{\circ} \mathrm{F}$ \qquad and the length of a dollar store toy:_0.74 m

1. Find the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$, harmonic for one of the plastic spinning dollar store toy. Make sure you account for the temperature in the room.

$$
\begin{aligned}
& \mathrm{fn}_{1}= \\
& \mathrm{fn}_{2}= \\
& \mathrm{fn}_{3}=
\end{aligned}
$$

2. As you spin it around faster and faster, the frequency increases, what happens to the pitch? \qquad !
